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Abstract 

Due to the increasing popularity of networked clusters of workstations and the need for 
portability across various parallel and distributed platforms, a number of programming environ- 
ments have been proposed to develop parallel programs. Express and PVM are two such 
commonly used environments that are available on most commercial parallel computers as well as 
a variety of clusters of workstations. Programs developed under Express are portable, that is, a 
program developed on one hardware platform can run on another platform without any significant 
modification (provided Express is available on both platforms). PVM provides a similar portability 
and is particularly suitable for heterogeneous systems. In this paper, we make an experimental 
performance comparison of Express and PVM. The comparison is done by evaluation of their 
performance through benchmarking on three platforms: an Intel iPSC/860 hypercube parallel 
computer, a cluster of SUN workstations connected by an Ethernet, and a cluster of HP 
workstations connected by an FDDI ring. The performance measures include the timings of 
various communication primitives coded with Express and PVM. The results of Express and PVM 
on the iPSC/860 are also compared with the equivalent implementations using the NX message- 
passing library of the iPSC/860. To make a comparison from the applications point of view, we 
have also benchmarked a suite of various applications including three different versions of 
Gaussian elimination, and the N-body problem. The performance results also enable us to 
compare three different hardware platforms. While it is not the purpose of this study to make a 
qualitative judgement on Express and PVM, we highlight their usefulness and provide an 
overview of their programming styles and main features. 
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1. Introduction 

In the recent years, we have witnessed an unprecedented growth of parallel comput- 
ing hardware platforms. Among such a large repertoire of hardware platforms, software 
designers desire to have the benefit of portability so that the code developed for one 
platform does not have to be rewritten or modified for the other. At the same time, 
advancements in the design of processor architecture and communication mediums have 
resulted in the emergence of fast workstations connected by high-speed communication 
networks [4,5]. These clusters of workstations also known as workstation farms are 
approaching the speed of some of the contemporary parallel computers. Recent studies 
have shown that clusters of workstations have the potential of solving very large-scale 
problems [61. A number of programming environments for such platforms have recently 
emerged. These software environments can simultaneously exploit the potential power 
of diverse parallel and distributed hardware platforms and provide portability across 
them. They can simulate a cluster of workstations as a virtual parallel computer, and can 
perform communication across multiple homogeneous and heterogeneous parallel ma- 
chines. 

This paper compares two currently popular parallel programming environments. The 
first is Express which is a commercial product from Parasoft Corporation [21]. The 
second is PVM which is available in the public domain [24]. We call them ‘environ- 
ments’ because they are neither operating systems nor languages, rather they allow the 
programs to be written using standard C or Fortran. As elaborated in Refs. [ 13,251, both 
Express and PVM are more than just message-passing libraries since they provide a 
broad set of tools and utilities that are vital for full exploitation of computing and 
networking resources. 

A number of other similar environments have also been proposed, including Linda 
[2,11], P4 [ 101, PICL [ 151, Zipcode [23] and more recently MPI [ 181. A detailed survey 
of software environments for networked systems can be found in [26] while an overview 
of recent developments for message-passing techniques for both parallel and distributed 
systems can be found in [ 181. 

A key measure of the usefulness of programming environments like Express and 
PVM is the speed of the basic primitives used frequently in parallel programs. We have 
evaluated the performance of some of the basic primitives of Express and PVM running 
on an iPSC/860 parallel computer, a cluster of HP workstations connected by an FDDI 
network, and a cluster of SUN/IPX workstations connected by an Ethernet. The results 
from this evaluation can be useful in a number of ways. 

. They help us assess these environments against each other to find out which one 
performs better. 

. They reveal the amount of the extra overhead incurred due to portability, when 
compared to the host operating system such as NX. 

. Algorithm developers and parallel compiler writers can benefit from these results 
by understanding the overhead incurred by basic communication primitives on various 
platforms and can, therefore, estimate the performance of various libraries [l]. 

. The availability of the exact timings of various communication patterns under 
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different platforms can assist in making better problem partitioning and scheduling 
decisions. 

. These timings enable us to compare the performance of the iPSC/860 parallel 
computer to workstation clusters using different networks and shed some light on the 
trade-offs between performance and cost. 

The rest of this paper is organized as follows. In the Section 2, we provide some 
background of Express and its utilities. In section 3, we provide an overview of PVM 
and its utilities. In Section 4, we give a summary of the hardware platforms used in our 
experiments. In Section 5, the performance results of the communication primitives are 
given. The timings of the application benchmark suite are presented in Section 6 and the 
Section 7 concludes this paper. 

2. Overview of express 

Express is developed by a group of researchers who started Parasoft Corporation. It 
can be used to write parallel programs on a variety of parallel machines including the 
CM5, NCUBE, Intel iPSC/2 and iPSC/860 hypercubes, Intel Paragon and transputer 
arrays [20,21]. The network version of Express allows a network of workstations to be 
used as a ‘virtual parallel machine’. Workstations that Express can run on include DEC, 
HP, IBM/RS6000, SC1 and Sun. 

The history of Express can be traced back to the Caltech/JPL machines developed in 
the early eighties [12,13]. At that time, the simplest model of a parallel or distributed 
computation was the one in which a ‘master’ process takes the responsibility of creating 
a number of ‘worker’ processes which perform the computations required to produce the 
overall desired output. In Express, this style of programming is called the host-node 
programming model where the ‘master’ is the host while the ‘worker’ is the node. In 
order to avoid the user to write the host programs, a host-free programming model, 
called Cubix, was also developed which provided an I/O system for opening, reading 
and writing files and interfacing with the user. Later, an operating system known as 
‘multitasking, object-oriented, operating system’ (MOOSE) was built to support multi- 
tasking, remote task creation, scheduling and a number of other housekeeping functions. 
Moreover, a system called ‘crystal router’ was developed to support more efficient 
concurrent communication [14]. Eventually, the combined research efforts at Caltech 
resulted in an integrated software package now called Express. As shown in Fig. 1, there 
are three implementation layers of Express. 

. The lowest level consists of utilities for controlling the hardware, such as the 
allocation of processors, loading of programs, etc. 

. The medium level provides support for problem partitioning. It also allows 
communication among the nodes and between the node and the control processor. 

. The highest level contains facilities for node programs to perform I/O and utilities 
for access to the host operating system. 

Since each level is logically distinct and built only on those below it, Express is 
portable to a variety of systems using the ‘top-down’ approach. 
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Highest Level 

Medium Level 

A complete I/O system 
allowing parallel node programs access to the operating 
system facilities of the control processor. 

Problem decomposition 
done by providing utilities for communication among nodes, 
and between nodes and control processor 

Lowest Level 

Control of hardware 
such as allocating processors, loading programs, and message 
passing between arbitrary nodes. 

Fig. I. Three layers of Express implementation. 

A summary of the utilities provided by Express is illustrated in Fig. 2. The 
communication utilities include blocking and non-blocking communication among nodes, 
exchange, broadcast and collective communication such as reading and writing a vector. 
The global communication includes concatenation, global reduction operations, synchro- 

Asychmnous Comm 

concurrent and 

C and Fonran 

Allocating nodes. 

NDB Source Level 

Fig. 2. The Express utilities. 
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nization, etc. In addition, Express provides processors control, domain decomposition 
tools, parallel I/O, graphics and debugging and performance analyses tools. 

3. Overview of PVM 

PVM is developed by researchers at Emory University, Oak Ridge National Labora- 
tory (ORNL), University of Tennessee, Carnegie Mellon University and Pittsburgh 
Supercomputer Center [25]. It permits a network of heterogeneous computers to be used 
as a single parallel computer. PVM has evolved through many versions. The initial 
versions of PVM used TCP/IP sockets to implement all communication. Consequently, 
PVM was limited to workstation environments such as Sun3 and Sun4 SPARCstation, 
HP-9000 PA-RISC, IBM/RS6000, etc. However, recent versions of PVM such as the 
one reported in this paper have included implementation within heterogeneous parallel 
systems. Heterogeneous network-based computing refers to general purpose concurrent 
computing where: 

. The hardware platform consists of a collection of computer systems of varying 
architectures interconnected by one or more network types such as FDDI. 

. Applications are viewed as comprising several sub-algorithms, each of which is 
potentially different in terms of its most appropriate programming model, implementa- 
tion language and resource requirements. 

PVM’s portability is similar to Express. The PVM computing model is illustrated in 
Fig. 3. Under PVM, a user defined collection of serial, parallel and vector computers 
appear as one large distributed-memory computer. PVM supplies the functions to 
automatically start up tasks on the virtual machine, and allows tasks to communicate and 
synchronize with each other. A task is defined as a unit of computation in PVM 
analogous to a UNIX process. Applications, which can be written in Fortran or C, can be 
parallelized by using message-passing constructs common to most distributed-memory 
computers. By sending and receiving messages, multiple tasks of an application can 
cooperate to solve a problem in parallel. 

PVM supports heterogeneity at the application, machine, and network level, and can 
handle data conversion that may be required [16]. In other words, PVM allows 
application tasks to exploit the architecture best suited to their solutions. Moreover, 
PVM allows the virtual machine to be interconnected by a variety of different networks. 
PVM provides routines of packing and sending messages between tasks. The model 
assumes that any task can send a message to any other PVM task. The PVM 
communication model provides synchronous and asynchronous blocking send and 
receive, multicast to a set of tasks and broadcast to a user defined group of tasks. Since 
message buffers are allocated dynamically, the maximum size of the messages that can 
be sent or received is limited by the amount of available memory on a given host. 

PVM supplies routines that enable a user process to become a PVM task and to 
become a normal process again. These routines perform functions such as adding and 
deleting hosts from the virtual machine, and starting and terminating PVM tasks. PVM 
also provides fault-tolerance: if a host fails, PVM can detect this and delete the host 
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Fig. 3. The PVM computing model. 

from the virtual machine. The status of host can be requested by the application and, if 
required, a replacement host can be added by the application. 

4. Test environment 

Our test environment included three platforms: an Intel iPSC/860 hypercube, an 
Ethernet based network of SUN workstations, and an FDDI based ring of HP worksta- 
tions. All tests programs were written in Fortran. The hardware platforms are briefly 
described below. 

Table 1 

Configurations of the iPSC/860 used in the experiments 

No. of nodes 32 

Node CPU i860 

Clock frequency 40 MHz 

Main memory/node 8 Mbytes 

Express version 3.1 

PVM version 3.2.0 

iPSC node O/S NX/2 (rel. 3.2) 
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Table 2 
Configurations of SUN IPX and HP clusters 

Network SUN-IPX/Ethemet HP/PDDl-Ring 

No. of workstations 
System model 
Main memory 
OS name 
Express version 
PVM version 

8 4 
4/50 SPARC IPX 135 
16 Mbytes 128 Mbytes 
SUN OS 4.1.3 HP-ux 09.01 
3.2.5 3.2.5 
3.2 3.2 

Our first platform was the Intel iPSC/860 parallel computer at Caltech’s Concurrent 
Supercomputing Center. This system is based on hypercube interconnection network 
topology and can scale up to 128 nodes. It is controlled from a host computer, called 
‘system resource manager’ or SRM which runs System V UNIX [17]. The iPSC/860 is 
based on the i860 RISC microprocessor [19]. Each node has a hardware communication 
module, called DCM (direct connect module) that connects a node to the interconnection 
network [22]. Each DCM router can support up to eight channels which are bit-serial and 
full duplex. Table 1 gives a summary of the configuration of the iPSC/860. Some of 
our results using the NX library concur with those of earlier studies [7,8]. In our 
experiments, for small data sizes, we used 1000 repetitions for each primitive to improve 
the accuracy; for large messages, the number of repetitions was varied from 100 to 200. 

For performance evaluation of networks of workstations, we used two platforms: The 
first was a cluster of 8 homogeneous SUN SPARC IPX workstations connected by 7 
Ethernet segments. The second was a cluster of 4 homogeneous HP 735 workstations 
connected by FDDI. Three of the HP workstations are equipped with FDDI interface 
only. The fourth one has both FDDI and Ethernet interfaces and functions as a 
host-based router for the rest three to the outside network. Table 2 gives a summary of 
the configuration of SUN/IPX and HP clusters. 

The experiments on these clusters were conducted at night and when the systems 
were idle. In each experiment, for small data sizes, we used about 500 repetitions for 
each primitive. For larger messages, the number of repetitions used was 100. In addition, 
each experiment was done 5 times and the average was taken across repetitions within 
an experiment and across experiments. 

5. Communication performance 

The communication tests include one-to-one communication, exchange, broadcast, 
global reduction operations, ring communication and complete exchange. During our 
experiments, we found that both Express and PVM exhibited dramatic differences in 
performance when compared on the three hardware platforms. In addition, we also 
discovered that the size of the communication data had a great impact on relative 
performance of all three software environments. Therefore, for each primitive, we have 
divided the results into two parts. The first part presents the timing results on the 
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iPSC/860 and the second part presents the results on the HP and IPX clusters. 
Furthermore, each part is presented with results on small (0 to 200 bytes), large (200 to 
1000 bytes), and very large (1000 to 16000 bytes) messages. These results are provided 
in the following sections. 

5.1. One-to-one communication 

For measuring the communication speed between two nodes, we performed the 
standard echo test. In the echo test, the communication time between sending and 
receiving nodes is measured by starting a clock at the sending node and then invoking 
the send and receive routines to send out a message and wait for a reply. On the 
destination node, receive and send routines are used to echo this message back to the 
sending node. This process is repeated N times, and the average is taken. 

The results of one-to-one communication using NX, Express and PVM on the 
iPSC/860 are shown in Fig. 4. The results for the IPX and HP cluster are given in Fig. 
5. Fig. 4 indicates that the timings of Express and NX are relatively close for small, 
medium and large data sizes. PVM, on the other hand, is about 6 times slower than 
Express and NX for small messages. But as the message size increases, the difference 
between the performance of PVM and Express decreases. For example, as shown in Fig. 
4(b), the difference between PVM and Express decreases steadily as the message size is 
increased from 200 to 1000 bytes. For very large messages, as indicated in Fig. 4(c), the 
timings of PVM and NX are about the same. Some timing values for various message 
sizes are provided in Table 3. 

From Fig. 5, we can observe that, on the HP cluster, PVM is 4 times slower than 
Express. But this difference reduces to 1.5 times when the messages get larger. A similar 
trend can be observed using IPX workstations with Ethernet. 

Notice that Express timings on the cluster of HP workstations and iPSC/860 are 
comparable, but PVM on the HP cluster is slower than that on the iPSC/860. Compared 
to the HP cluster, Express and PVM are about 2 to 3 times slower on the IPX cluster. 

5.2. The exchange operation 

The exchange function simultaneously sends a message to a node and receives a 
reply. The advantage of this function is that data can be read from and sent to the same 
or different nodes in one step. Another advantage is that data transmission in reading 
and writing can be overlapped. Moreover, the user is free from worrying about which 
node should read first and which should write. For PVM, since it does not provide the 
exchange operation, we implemented it by using one pvmfsend and one pvmfrecv in one 
node, and correspondingly, one pvmfrecv and one pvmfsend in the other node. 

As shown in Fig. 6, on the iPSC/860, PVM is about two times slower than Express. 
However, as the message size increases, the difference between the timings of PVM and 
Express becomes smaller. From Fig. 7, we can observe the overall trend in the 
performance of PVM and Express on the HP and IPX clusters is similar to that of Fig. 6. 
For small message sizes, Express running on the IPX cluster is 4 times faster than PVM. 
On the HP cluster, Express is about 7 times faster than PVM. But with the larger 
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(a) Small messages. (b) Large messages. 

I 

J 

Fig. 4. Times for one-to-one communication using NX, Express, and PVM on the iPSC/860. 

message sizes, Express is only about 2 times faster than PVM on both clusters. Express 
on the HP cluster is about 2 times slower than Express on the iPSC/860. Similarly, 
PVM on the HP cluster is 3 times slower than PVM on the iPSC/860. 

5.3. The broadcast operation 

Broadcast is performed to send the same data to more than one node. It can be 
performed between host and nodes, or from one node to multiple nodes. It is one of the 
frequently used primitive and is, therefore, important for performance comparison. Both 
Express and PVM provide routines for broadcast. In NX, on the other hand, routines 
such as csend and crecv are used for broadcast purpose as well. Message can also be 
sent to a subcube composed of a set of nodes surrounding the source node. Express and 
PVM have the extra advantage of specifying arbitrarily any node(s) that should receive 
the broadcast message. 
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(a) Small messages. (b) Large Inessages. 

(c) very large messages. 

Fig. 5. Times for one-to-one communication using Express and PVM on the HP and IPX clusters. 

The timings for the broadcast operation on the iPSC/860 using 4 processors are 
shown in Fig. 8. As can be noticed, the broadcast operation of PVM is inefficient and is 
much slower compared to both NX and Express. For small messages, broadcast 

Table 3 
Times required for one-to-one communication with messages of different sizes ( JLS) 

Bytes iPSC/860 FDDI Ethernet 

NX Express PVM Express PVM Express 

0 68 83 736 189.0 677 643 
4 74 92 741 189.7 858 647 

100 115 134 841 271.0 1252 754 
200 255 270 852 303.0 1342 820 

loo0 566 584 929 598.0 1350 1270 
16000 5941 5958 5815 4570.0 9271 19352 

PVM 

2225 
2380 
2563 
2774 
3211 

23990 
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‘r 

Fig. 6. Times for the exchange operation between nearest neighbors using NX, Express and PVM on the 

iPSC/860 (4 processors). 

operation of PVM for 4 nodes is bout 40 times slower than that of Express and NX. 
However, for large messages, this difference reduces to 6-7 times. 

As shown in Fig. 9, the broadcast operation of PVM on the cluster of IPX 
workstations is about 7 times slower than Express when the messages size is small. But 
for large messages, PVM is about 1.5 times slower than Express. On the HP cluster, for 
small message size with 4 nodes, PVM is about 4 times slower than Express. For very 
large messages, the timings for PVM are comparable to Express. For very large 
messages, PVM even outperforms Express. 

Comparing different hardware platforms, PVM on the IPSC/860 is 10 times slower 
than on the HP cluster when message size is small. But, this difference reduces to about 
5 times for large messages. Express on the IPX performs about 10 times slower than on 
the iPSC/860 while on the HP it performs 2-3 times slower than on the iPSC/860, 
when the messages are small. 
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(b) Large messages 

(c) very large messages 

Fig. 7. Times for the exchange operation using Express and PVM on the HP and IPX clusters (4 workstations). 

5.4. Global communication 

Global communication operations are frequently required in parallel programs. In 
such global operations, all the nodes participate in the same operation. The reduction 
operations are examples that require global communication. A reduction operation takes 
as input a value in each processors and outputs a single value in every processors. There 
are various reduction operations such as add, prod, max, min, and, or, XOT, etc. While 
NX provides different calls for each of these operations, Express has a unified function 
for performing reduction operations. But since routines for these operations are not 
provided by PVM, they had to be implemented. Express has an extra facility of 
specifying a list of nodes that should participate in the global operation. In this paper, 
only the results of the sum operation are given. 
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Fig. 8. Times for the broadcast operation using NX, Express and PVM on the iPSC/860 (4 processors). 

Tables 4 and 5 include times to perform the global sum on 1, 4, 16 and 26 words. 
The results for the iPSC/860 are repeated for 4, 8 16 and 32 processors. It can be seen 
that both Express and NX are much faster than PVM. We observed similar results (not 
reported here) for some other global reduction operations such as multiply and logical 
AND. The global operations of PVM do not seem to scale very well with an increase in 
the number of processors. Moreover, compared to iPSC/860, these operations are much 
slower on the clusters of HP and IPX workstations. 

5.5. The ring communication test 

In the ring communication test, each node takes a message and circulates it through 
each of the other nodes in the network. This communication pattern is generated in a 
straight forward manner. Each node finds its ‘forward’ and ‘backward’ neighbor with 
whom it communicates. Each node then writes the message to its ‘forward’ neighbor 
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(b) Large messages 

CC) very large messages. 

Fig. 9. Times for the broadcast operation using Express and PVM on the HP and IPX clusters (4 workstations). 

and reads from the ‘backward’ neighbor. This is repeated N - 1 times where N is the 
total number of nodes. 

In general, the efficiency of this communication pattern depends on the underlying 
network topology. Determination of the ‘forward’ and ‘backward’ neighbors can be 
done using Express’s grid utilities which can convert a physical topology to a virtual 
topology. On the hypercube, ‘forward’ and ‘backward’ neighbors can be easily found 
using gray codes for implementing the ring pattern using NX or primitives. But for the 
workstations cluster environment, this determination can not be done meaningfully. 
Hence, we can just arbitrarily determine the ‘forward’ and ‘backward’ nodes for each 
node, such that the message goes once through each node. 

As can be seen from Fig. 10, on the iPSC/860, PVM is 1 to 2 times slower than 
Express and NX primitives for 4 and 8 nodes. As the message size gets larger, the 
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Table 4 

Times for global sum (ms) on the iPSC/860 

Processors Words NX-iPSC860 EXP.-i860 PVM-iPSC860 

4 1 0.27 0.40 29.95 

2 0.27 0.41 29.76 

4 0.28 0.42 29.73 

26 0.56 1.10 33.00 

8 

16 

1 0.42 0.60 47.33 

2 0.43 0.61 47.81 

4 0.43 0.64 47.99 

26 1.05 1.82 56.80 

1 

2 

4 

26 

32 1 0.77 1.03 89.78 

2 0.77 1.05 89.50 

4 0.79 1.09 86.56 

26 2.3 1 3.14 116.01 

0.60 
0.61 

1.72 

0.80 57.01 

0.81 55.71 

0.84 56.04 

2.48 64.82 

timings for PVM, Express and NX become almost identical. On the HP and IPX 
clusters, PVM is slower than Express (Fig. 11). Compared with the iPSC/860, the ring 
test on he HP cluster is about 2 times slower for small messages. For large messages, 
timings for HP cluster are comparable to those on the iPSC/860 and sometimes even 
smaller. The ring test on the HP cluster is 3 times faster than on the IPX cluster for 
small message size. 

Table 5 

Times for global sum (ms) on the workstation clusters 

Processors words Exp-HP PVM-HP 

4 1 4.399 7.674 

2 3.774 7.680 

4 4.114 7.806 

26 5.346 8.039 

ExplPX PVM-IP 

3.216 22.103 

3.247 22.140 

3.272 22.118 

4.235 23.218 

8 1 - - 5.809 32.85 1 

2 - - 6.057 33.639 
4 - 7.138 33.505 

26 - - 7.901 34.838 
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Fig. 10. Times for the ring test on the iPSC/860 using NX, Express and PVM (4 processors). 

5.6. The complete exchange 

In the complete exchange communication pattern, which is also known as all-to-all 
personalized communication 191, each of the N nodes sends a different block of data to 
each of the remaining N - 1 nodes. This communication pattern is equivalent to a 
complete directed graph. It is used in a number of algorithms including matrix transpose, 
matrix-vector multiply, 2-dimensional FITS distributed table look-ups, etc. The time 
required to carry out the complete exchange operation is an important measure of the 
power of a distributed-memory parallel computer system since it is the densest commu- 
nication requirement that can be implemented on a network. 

The timings for complete exchange using 4 nodes using PVM, Express and NX on 
the iPSC/860 are given in Fig. 12. PVM is about 3 times slower than Express for small 
messages. For medium and large messages this difference reduces considerably. For 
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(c) very Large messages 

Fig. 11. Times for the ring test using Express and PVM on the HP and IPX clusters (4 workstations). 

larger message sizes, timings for NX primitives and Express are about the same while 
PVM is about 2 times slower than the NX primitives and Express. 

On the cluster of HP workstations (Fig. 131, PVM is 4 times slower than Express. 
However, for large messages, PVM is only 2 times slower. Comparing different 
platforms, for small messages, Express and PVM on the iPSC/860 are 6 times faster 
than on the HP cluster. For large messages, the timings difference reduces to about 2 
times only. Comparing the cluster of HP and IPX workstations, for small message size, 
the complete exchange operation on the HP cluster is about 2 times faster than on the 
IPX cluster. 

6. Evaluation with an application benchmark suite 

To compare the performance of Express, PVM and NX with real applications, we 
implemented an application benchmark suite. The suite includes three different versions 
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Fig. 12. Times for the complete exchange test using NX, Express and PVM on the iPSC/860 (4 processors). 

of Gaussian elimination, and the N-body problem. These applications were coded using 
Fortran with Express, PVM and NX primitives. The execution times were obtained with 
1, 2, 4 and 8 nodes on the IPX workstations cluster, and 1, 2 and 4 nodes on the HP 
cluster. On the iPSC/860, we used 1,2,4, 8, 16 and 32 nodes. The execution time of an 
application was measured by taking the average across all the nodes. The results are 
given in the following sections. 

6.1. Gaussian elimination (row-block partitioning) 

The three versions of Gaussian elimination for solving linear equations are based on 
partial pivoting algorithms, but with different data partitioning strategies. As a result, the 
algorithms used in the three versions are quite different. The first version is based on 
row-block partitioning, that is, an equal number of contiguous rows of the coefficient 
matrix are assigned to each processor. The program consists of three routines; for 
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(c) Large messages. 

Fig. 13. Times for the complete exchange test using Express and PVM on the HP and IPX clusters (4 
workstations). 

generating the random data, performing Gaussian elimination, and backward substitu- 
tion. Only the Gaussian elimination routine was timed. 

The execution times of Gaussian elimination with row-block partitioning using 
Express, PVM and NX primitives on different platforms are shown in Tables 6-8. These 
tables also include the times for serial execution of Gaussian elimination using one 
processor. On the iPSC/860, the serial version is implemented using NX only. On the 
iPSC/860, the execution times for the Express version exhibit speedup with the number 
of processors varied from 1 to 16. The speedup is better with a larger matrix size. 
However, the execution times start to increase with 32 processors. On the other hand, 
the NX version still yields additional speedup with 32 processors. Using the PVM 
version, speedup is observed with the number of processors varying from 2 to 4. 
However, the execution times start increasing with 8 or more processors. From Table 6, 
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Table 6 
Timings (s) for row-block partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860 

Matrix size PE = 1 PE = 2 PE=4 PE=8 PE= 16 PE=32 

NX NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM 

256 x 256 5.94 3.6 3.8 11.3 2.2 2.3 10.2 1.5 1.2 11.8 1.1 2.1 14.8 0.9 3.5 22.1 

384X 384 24.71 12.8 13.0 19.7 6.6 6.8 17.3 4.0 4.7 28.3 2.6 4.4 14.8 2.2 6.9 22.4 

512X 512 59.63 30.1 31.1 35.3 15.5 15.6 28.2 8.6 9.2 29.4 5.6 8.5 31.5 4.1 11.4 48.3 

640x 640 120.87 61.1 62.6 62.4 31.0 31.1 41.5 16.2 17.5 36.3 9.8 14.0 41.2 6.9 17.4 58.9 

768 x 768 219.87 106.5 108.2 106.5 54.2 54.7 64.8 27.9 28.7 48.0 16.7 20.8 54.3 10.8 24.7 74.0 

Table 7 

Timings (s) for row-block partitioned Gaussian elimination using Express and PVM on the IPX cluster connected by 
Ethernet 

Matrix size PE= I PE = 2 PE=4 PE= 8 

Express PVM Express PVM Express PVM Express PVM 

256 x 256 15.26 15.97 8.38 16.44 5.24 14.53 7.10 19.16 

384 x 384 51.74 53.78 25.52 41.65 15.38 34.09 15.93 33.60 

512 X 512 124.87 131.82 66.09 92.46 38.66 66.86 26.89 58.64 

640 x 640 247.12 255.48 126.79 157.65 62.26 99.72 61.62 88.97 

768 X 768 425.9 I 448.82 223.47 26 1.07 118.87 167.52 94.33 120.38 

Table 8 
Timings (s) for row-block partitioned Gaussian elimination using Express and PVM on the HP cluster connected by 
FDDI 

Matrix size 

256 X 256 

384 x 384 

512X 512 

640X640 

168 x 768 

PE= 1 

Express 

6.01 

22.36 

67.43 

115.74 

232.90 

PVM 

5.95 

2 I .94 

65.86 

113.46 

226.91 

PE = 2 

Express 

3.07 

10.43 

29.02 

52.30 

99.04 

PVM 

6.63 

18.36 

41.32 

70.75 

118.81 

PE = 4 

Express 

1.81 

5.72 

12.18 

25.22 

44.65 

PVM 

5.52 

14.16 

25.56 

43.01 

66.70 

one can observe that for small number of processors on the iPSC/860, the difference 
between the performance of Express and NX is insignificant. Express performs poorly 
with a large number of processors. The performance of PVM is even worse for the large 
number of processors. The main reason is that the algorithm used makes an extensive 
use of broadcast operations for sending the pivot row to other processors. Moreover, no 
optimizations are made in communication calls to exploit the hypercube topology. As a 
result, the algorithm uses a number of global operations which are quite slow in Express 
and PVM. The relative performance of this version of Gaussian elimination using 
Express and NX is also indicated in Fig. 14(a) in which we have plotted the ratios of 
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(a) Row-block partitionmg. ib) Column-block partitioning 

(c) Column-scattered partitioning. 

Fig. 14. Ratios of execution times of Express to NX for different Gaussian elimination algorithms on the 

iPSC/860. 

execution times of Express to NX. The ratios of execution times of PVM to Express are 
plotted Fig. IS(a). 

On both the IPX and HP clusters, the execution times for Express and PVM exhibit 
speedup with an increasing number of processors, with a reasonably large matrix size. 
The timings of Express version is again better than the PVM version. 

6.2. Gaussian elimination (column-block partitioning) 

In this version of Gaussian elimination, the data is partitioned across processors in 
terms of blocks of columns. The execution times for this version are shown in Tables 
9-l 1. On the iPSC/860, Express and PVM perform well for large matrices when the 
number of processors is between 2 and 16 but performed poorly for 32 processors. It can 
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081 
5 16 N”k‘ 20 25 30 

0, “odes 

(b) Column-block partitioning. 

(c) Column-scattered partitioning. 

Fig. 15. Ratios of execution times of PVM to Express for different Gaussian elimination algorithms on the 

iPSC/860. 

be noticed that, in general, the execution times of the column-block partitioned versions 
are larger than those of the row-block partitioned versions. This is due to the fact that in 
the row-block partitioned algorithm, the determination of the pivoting row is done in 

Table 9 
Timings (s) for column-block partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860 

Matrix size PE = 2 PE = 4 PE=8 PE= 16 PE = 32 

NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM 

256 X 256 6.3 7.0 6.7 3.2 3.6 3.4 1.8 2.8 2.8 1.2 3.8 4.4 1.1 5.3 7.8 

384X 384 23.1 23.9 23.1 9.8 11.6 9.9 5.0 6.8 6.1 3.2 7.6 7.8 2.6 12.3 13.6 

512X 512 46.0 47.5 46.0 23.0 26.5 24.6 11.9 14.3 13.4 6.6 13.2 12.9 5.1 20.2 21.3 

640 X 640 102.6 110.2 102.7 51.5 56.5 51.7 25.8 28.6 26.9 12.1 20.8 20. I 8.3 30.3 30.6 

768X 768 178.6 182.8 182.9 90.6 98.7 90.8 46.9 50.2 47.3 24.2 31.0 28.6 13.0 42.7 41.7 
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Table 10 
Timings (s) for column-block partitioned Gaussian elimination using Express and PVM on the IPX cluster connected 

by Ethernet 

Matrix size 

256 x 256 

384 X 384 

512X 512 

640 X 640 

768 X 768 

PE= I 

Express 

9.90 

32.12 

16.59 

150.03 

265.83 

PVM 

25.01 

55.93 

104.70 

198.01 

303.50 

PE = 2 

Express 

9.81 

26.55 

51.55 

107.79 

182.40 

PVM 

27.06 

53.3 I 
104.61 

154.16 

241.01 

PE=4 

Express 

7.7 I 
18.80 

37.1 I 
65.54 

105.54 

PVM 

38.5 I 
63.91 

91.97 

131.15 

185.98 

PE= 8 

Express 

10.5 I 
18.83 

33.92 

51.55 

76.23 

PVM 

55.46 

96.41 

199.60 

256.55 

317.70 

parallel. On the other hand, column-block partitioned algorithm performs this step 
serially. When the number of processors is large, the PVM-based column-block 
partitioned version takes less time than the PVM-based row-partitioned version because 
the broadcast operation is used less frequently in the former version. The inefficient 
broadcast operation of PVM, therefore, is the main cause of performance degradation 
when using a large number of processors. 

On the IPX cluster of workstations, it is interesting to see that Express yield speedup 
if the number of workstations is increased even up to 8. PVM, however, does not 
perform well beyond 4 workstations. Both Express and PVM perform better on the HP 
cluster than on the iPSC/860 with 1, 2 or 4 workstations or processors. The relative 
performance of Express to NX and PVM to Express is indicated in Fig. 14(b) and Fig. 
15(b), respectively. 

6.3. Gaussian elimination (column-scattered partitioning) 

In this version, the data is partitioned using cyclic distribution of the columns of the 
coefficient matrix. The execution times of Gaussian elimination with column-scatter 
partitioning using Express, PVM and NX primitives on different platforms are shown in 
Tables 12-14. The results indicate that, in general, this algorithm is better than the 
column-block partitioning version but is comparable to the row-block partitioning 
version. This is because the column-scatter partitioning can balance load well which 

Table II 

Timings (s) for column-block partitioned Gaussian elimination using Express and PVM on the HP cluster connected 

by FDDI 

Matrix size 

256 X 256 

384 X 384 

512 x 512 
640 X 640 

768 x 768 

PE= 1 

Express 

3.10 

11.40 

30.84 
66.35 

115.99 

PVM 

7.71 

18.44 

40.80 
74.52 

125.29 

PE = 2 

Express 

2.85 

9.05 

27.31 
41.42 

89.8 1 

PVM 

1.92 

17.58 

33.11 
57.31 

93.04 

PE-4 

Express 

2.15 

6.28 

13.01 

25.80 

43.33 

PVM 

10.43 

19.74 

33.48 

50.45 

81.55 
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Table 12 

Timings (s) for column-scattered partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860 

Matrix size PE = 2 PE = 4 PE = 8 PE= 16 PE=32 

NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM 

256 x 256 4. I 4.4 4.1 2.2 2.6 2.4 1.4 2.7 2.5 1.2 3.8 3.9 1.2 6.3 6.6 

384x 384 13.9 14.5 14.0 6.1 1.7 1.2 3.8 5.4 5.1 3.0 7.5 1.9 2.8 12.3 12.5 

512 X 512 32.0 33.9 32.2 16.2 17.7 16.3 8.9 11.2 10.3 5.8 12.9 11.8 5.0 20.1 20.2 

640 X 640 63.3 65.6 63.4 32.1 34.1 33.2 16.1 18.8 17.6 9.8 20.0 19.8 8.1 30.1 30.4 

768 X 768 110.7 112.7 111.0 55.6 58.3 57.0 28.6 34.8 32.4 15.4 28.4 28.1 12.5 42.1 43.0 

Table 13 

Timings (s) for column-scattered Gaussian elimination using Express and PVM on the IPX cluster connected by 

Ethernet 

Matrix size PE= 1 PE = 2 PE=4 PE=8 

Express PVM Express PVM Express PVM Express PVM 

256 X 256 7.38 12.26 6.18 25.96 6.62 35.81 9.14 55.52 

384 X 384 23.95 32.96 16.83 46.28 17.36 59.60 17.19 89.81 

512X 512 58.61 61.32 34.54 74.39 28.84 92.48 35.59 131.26 

640 X 640 112.26 122.60 63.04 114.93 55.14 203.08 51.02 191.80 

768 X 768 192.60 203.94 102.78 169.32 68.68 147.02 72.40 255.08 

Table 14 

Tunings (s) for column-scattered Gaussian elimination using Express and PVM on the HP cluster connected by FDDI 

Matrix size 

256 X 256 

384 X 384 

512X 512 

640X 640 

168 x 168 

PE= 1 

Express 

0.27 

9.9 I 
27.49 

60.55 

104.41 

PVM 

5.16 

14.98 

34.44 

63.87 

108.49 

PE = 2 

Express 

1.82 
5.39 

12.32 

26.61 

56.74 

PVM 

1.3 1 

14.78 

26.48 

44.09 

69.12 

PE = 4 

Express 

1.88 

4.45 

9.10 

17.20 

29.14 

PVM 

10.59 

18.51 

29.61 

43.46 

63.68 

results in reduction of processor waiting times. However, it requires excessive ex- 
changes of messages which can delay the execution. When the matrix is small and the 
number of processors is large, the benefit of load balancing is small compared to the 
extra cost of communication. 

On the iPSC/860, for small matrix size, the execution times for the Express version 
exhibit speedup with the number of processors increased from 1 to 8. Speedup is also 
observed for 16 processors but only for large matrix sizes. The execution times increase 
with 32 processors. On the other hand, the NX version yields speedup with 32 
processors. The execution times for the PVM version are comparable to Express. For 
large matrix size, the PVM version sometimes performs better than the Express version. 
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Table 17 
Timings (s) for the N-body problem using Express and PVM on the IPX cluster connected by FDDI 

Points PE=l PE=2 PE=4 

Express PVM Express PVM Express PVM 

512 1.71 2.36 0.86 1.21 0.43 0.66 

Ik 6.79 9.45 3.35 4.75 1.65 2.43 

2k 27.09 37.96 13.21 18.97 6.60 9.5 1 

4k 108.50 151.55 52.77 75.49 26.35 37.91 

8k 433.82 606.14 209.75 299.86 105.58 150.71 

16k - - 838.73 1233.23 467.35 601.46 

On the cluster of HP and IPX clusters, the execution times for the Express and PVM 
decrease with increasing number of workstations. The times on the iPSC/860 and the 
HP cluster were comparable. For smaller matrix size, the times on the HP cluster are 
even better than those on the iPSC/860. The relative performance of Express to NX and 
PVM to Express is indicated in Fig. 14(c) and Fig. 15(c), respectively. 

6.4. The N-body problem 

The program for the N-body problem was written ’ using the algorithm reported in 
[20]. The algorithm used in this program is the simple o(N2) algorithm and not the 
more optimized O(N log N) approach. The execution times of the three platforms are 
shown in Tables 15-17. On the iPSC/860, all three versions yield speedup as the 
number of processors increases. For large number of bodies, the times of Express and 
iPSC/860 are very close. However, the PVM version is slower than the other two 
versions by a factor of 1 to 2 (see Fig. 16). On the HP cluster, the PVM version is in 
general 1.5 times slower than the Express version. On the IPX cluster, the times of both 

08 5 10 NA 0, no66 20 25 30 5 10 Nukr 01 “Ok 20 25 30 

(a) Ratios of execution times of Express to NX. (b) Ratios of execution times of PVM to Express. 

Fig. 16. Ratios of execution times of Express to NX and PVM to Express for the N-Body problem on tic 

iPSC/860. 

’ Min-Yoa Wu thankfully provided the NX version. 
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Express and PVM versions are close. Compared to the iPSC/860, the HP cluster was 
faster but IPX is slower. Because of less communication involved, both Express and 
PVM scale well on the workstation clusters. 

7. Conclusions 

In this paper, we made an experimental performance comparison of Express and 
PVM. The performance study was carried out on an iPSC/860 parallel computer, a 
cluster of IPX workstations connected by an Ethernet and a cluster of HP workstations 
connected by FDDI. The summary of our results is that Express primitives are in general 
faster than those of PVM but marginally slower than those of NX. When the message 
size is small, PVM primitives are significantly slower than NX and Express on the 
iPSC/860. In particular, the broadcast primitive of PVM needs significant improve- 
ment. In general, PVM is also slower than Express on the IPX and HP clusters. As the 
message size increases, the difference between the performance of PVM and Express 
becomes less significant. For very large messages, PVM performs slightly better than 
Express. This makes Express more suitable for fine-grained applications on parallel 
systems and PVM more suitable for coarse-grained problems on distributed systems. 
The global operations of both Express and PVM do not scale very well with increasing 
number of processors. Comparing different platforms, FDDI is comparable to iPSC/860. 
However, since only 4 workstations were available to us, the scalability of FDDI could 
not be determined. In general, FDDI is faster than Ethernet by factors of 4 to 8. 
Comparing the timings of applications, we noticed that PVM outperformed Express on 
the IPSC/860 when the granularity of the problem was large, the number of processors 
was small and the message sizes were large. 

The advantages of PVM include its small size, the simplicity in programming and 
support for complete heterogeneous supercomputing. The initial versions of PVM used 
TCP/IP sockets to implement all communications. Consequently, PVM was limited to 
distributed systems. However, recent versions of PVM such as the one reported in this 
paper have included implementation within the parallel systems. On the other hand, 
Express which was originally developed for homogeneous multiprocessors has evolved 
towards distributed systems. It has also tackled the problem of heterogeneity recently. 
Contrary to PVM, Express provides a very large number of primitives and a number of 
additional tools and utilities. 

The choice of using Express or PVM would depend on a number of factors such as 
the type of application, programming paradigm, communication patterns and typical 
sizes of the messages in the application. The type of application may determine whether 
the application can be better implemented as coarse-grained or fine-grained. If it is 
coarse-grained, a networked hardware platform would be more useful and PVM would 
be a more appropriate choice. However, if the application can be implemented as 
fine-grained on a parallel computing machine, Express can be more useful. The 
advantage of Express is that by using its portable message-passing library, the develop- 
ment phase of an application can be carried out on a cluster of networked workstations 
but final experimentation can be done on the parallel machine. The programming 
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paradigm could be SPMD or pure MIMD with a combination of different processes. The 
former can be better implemented using Express’s grid facilities while the latter can be 
done more efficiently using PVM due to its ability to dynamically create processes. 
Furthermore, PVM can be useful for running an application across multiple parallel 
machines as a combination of parallel and distributed computing paradigms. Communi- 
cations patterns and sizes of the messages within a parallel program can also affect the 
choice of Express and PVM (for example, PVM does not provide collective communica- 
tion and global operations). Finally, the major advantage of PVM over Express is that 
the former is available in public domain while the latter is a commercial product. 
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