
ELSEVIER Parallel Computing 23 (1997) 783-8 12

Practical aspects and experiences

Express versus PVM: A performance

Ishfaq Ahmad *

PARALLEL
COMPUTING

comparison

Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

Received 27 July 1994; revised 2 February 19%; accepted 25 October 19%

Abstract

Due to the increasing popularity of networked clusters of workstations and the need for
portability across various parallel and distributed platforms, a number of programming environ-
ments have been proposed to develop parallel programs. Express and PVM are two such
commonly used environments that are available on most commercial parallel computers as well as
a variety of clusters of workstations. Programs developed under Express are portable, that is, a
program developed on one hardware platform can run on another platform without any significant
modification (provided Express is available on both platforms). PVM provides a similar portability
and is particularly suitable for heterogeneous systems. In this paper, we make an experimental
performance comparison of Express and PVM. The comparison is done by evaluation of their
performance through benchmarking on three platforms: an Intel iPSC/860 hypercube parallel
computer, a cluster of SUN workstations connected by an Ethernet, and a cluster of HP
workstations connected by an FDDI ring. The performance measures include the timings of
various communication primitives coded with Express and PVM. The results of Express and PVM
on the iPSC/860 are also compared with the equivalent implementations using the NX message-
passing library of the iPSC/860. To make a comparison from the applications point of view, we
have also benchmarked a suite of various applications including three different versions of
Gaussian elimination, and the N-body problem. The performance results also enable us to
compare three different hardware platforms. While it is not the purpose of this study to make a
qualitative judgement on Express and PVM, we highlight their usefulness and provide an
overview of their programming styles and main features.

Keywords: Benchmarking; Express; Hypercube computers; Interprocessor communication; Parallel algorithms;
Parallel programming; Performance evaluation; PVM

* Tel.: + 852-2358-6980; fax: + 852-2358- 1477; e-mail: iahmad@cs.ust.hk.

0167-8191/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved.
PII SO167-8191(96)00087-7

784 I. Ahmad/Parallel Computing 23 (1997) 783-812

1. Introduction

In the recent years, we have witnessed an unprecedented growth of parallel comput-
ing hardware platforms. Among such a large repertoire of hardware platforms, software
designers desire to have the benefit of portability so that the code developed for one
platform does not have to be rewritten or modified for the other. At the same time,
advancements in the design of processor architecture and communication mediums have
resulted in the emergence of fast workstations connected by high-speed communication
networks [4,5]. These clusters of workstations also known as workstation farms are
approaching the speed of some of the contemporary parallel computers. Recent studies
have shown that clusters of workstations have the potential of solving very large-scale
problems [61. A number of programming environments for such platforms have recently
emerged. These software environments can simultaneously exploit the potential power
of diverse parallel and distributed hardware platforms and provide portability across
them. They can simulate a cluster of workstations as a virtual parallel computer, and can
perform communication across multiple homogeneous and heterogeneous parallel ma-
chines.

This paper compares two currently popular parallel programming environments. The
first is Express which is a commercial product from Parasoft Corporation [21]. The
second is PVM which is available in the public domain [24]. We call them ‘environ-
ments’ because they are neither operating systems nor languages, rather they allow the
programs to be written using standard C or Fortran. As elaborated in Refs. [13,251, both
Express and PVM are more than just message-passing libraries since they provide a
broad set of tools and utilities that are vital for full exploitation of computing and
networking resources.

A number of other similar environments have also been proposed, including Linda
[2,11], P4 [101, PICL [151, Zipcode [23] and more recently MPI [181. A detailed survey
of software environments for networked systems can be found in [26] while an overview
of recent developments for message-passing techniques for both parallel and distributed
systems can be found in [181.

A key measure of the usefulness of programming environments like Express and
PVM is the speed of the basic primitives used frequently in parallel programs. We have
evaluated the performance of some of the basic primitives of Express and PVM running
on an iPSC/860 parallel computer, a cluster of HP workstations connected by an FDDI
network, and a cluster of SUN/IPX workstations connected by an Ethernet. The results
from this evaluation can be useful in a number of ways.

. They help us assess these environments against each other to find out which one
performs better.

. They reveal the amount of the extra overhead incurred due to portability, when
compared to the host operating system such as NX.

. Algorithm developers and parallel compiler writers can benefit from these results
by understanding the overhead incurred by basic communication primitives on various
platforms and can, therefore, estimate the performance of various libraries [l].

. The availability of the exact timings of various communication patterns under

I. Ahmad/Parallel Computing 23 (1997) 783412 785

different platforms can assist in making better problem partitioning and scheduling
decisions.

. These timings enable us to compare the performance of the iPSC/860 parallel
computer to workstation clusters using different networks and shed some light on the
trade-offs between performance and cost.

The rest of this paper is organized as follows. In the Section 2, we provide some
background of Express and its utilities. In section 3, we provide an overview of PVM
and its utilities. In Section 4, we give a summary of the hardware platforms used in our
experiments. In Section 5, the performance results of the communication primitives are
given. The timings of the application benchmark suite are presented in Section 6 and the
Section 7 concludes this paper.

2. Overview of express

Express is developed by a group of researchers who started Parasoft Corporation. It
can be used to write parallel programs on a variety of parallel machines including the
CM5, NCUBE, Intel iPSC/2 and iPSC/860 hypercubes, Intel Paragon and transputer
arrays [20,21]. The network version of Express allows a network of workstations to be
used as a ‘virtual parallel machine’. Workstations that Express can run on include DEC,
HP, IBM/RS6000, SC1 and Sun.

The history of Express can be traced back to the Caltech/JPL machines developed in
the early eighties [12,13]. At that time, the simplest model of a parallel or distributed
computation was the one in which a ‘master’ process takes the responsibility of creating
a number of ‘worker’ processes which perform the computations required to produce the
overall desired output. In Express, this style of programming is called the host-node
programming model where the ‘master’ is the host while the ‘worker’ is the node. In
order to avoid the user to write the host programs, a host-free programming model,
called Cubix, was also developed which provided an I/O system for opening, reading
and writing files and interfacing with the user. Later, an operating system known as
‘multitasking, object-oriented, operating system’ (MOOSE) was built to support multi-
tasking, remote task creation, scheduling and a number of other housekeeping functions.
Moreover, a system called ‘crystal router’ was developed to support more efficient
concurrent communication [14]. Eventually, the combined research efforts at Caltech
resulted in an integrated software package now called Express. As shown in Fig. 1, there
are three implementation layers of Express.

. The lowest level consists of utilities for controlling the hardware, such as the
allocation of processors, loading of programs, etc.

. The medium level provides support for problem partitioning. It also allows
communication among the nodes and between the node and the control processor.

. The highest level contains facilities for node programs to perform I/O and utilities
for access to the host operating system.

Since each level is logically distinct and built only on those below it, Express is
portable to a variety of systems using the ‘top-down’ approach.

786

Highest Level

Medium Level

A complete I/O system
allowing parallel node programs access to the operating
system facilities of the control processor.

Problem decomposition
done by providing utilities for communication among nodes,
and between nodes and control processor

Lowest Level

Control of hardware
such as allocating processors, loading programs, and message
passing between arbitrary nodes.

Fig. I. Three layers of Express implementation.

A summary of the utilities provided by Express is illustrated in Fig. 2. The
communication utilities include blocking and non-blocking communication among nodes,
exchange, broadcast and collective communication such as reading and writing a vector.
The global communication includes concatenation, global reduction operations, synchro-

Asychmnous Comm

concurrent and

C and Fonran

Allocating nodes.

NDB Source Level

Fig. 2. The Express utilities.

I. Ahmad/Parallel Computing 23 (1997) 783-812 787

nization, etc. In addition, Express provides processors control, domain decomposition
tools, parallel I/O, graphics and debugging and performance analyses tools.

3. Overview of PVM

PVM is developed by researchers at Emory University, Oak Ridge National Labora-
tory (ORNL), University of Tennessee, Carnegie Mellon University and Pittsburgh
Supercomputer Center [25]. It permits a network of heterogeneous computers to be used
as a single parallel computer. PVM has evolved through many versions. The initial
versions of PVM used TCP/IP sockets to implement all communication. Consequently,
PVM was limited to workstation environments such as Sun3 and Sun4 SPARCstation,
HP-9000 PA-RISC, IBM/RS6000, etc. However, recent versions of PVM such as the
one reported in this paper have included implementation within heterogeneous parallel
systems. Heterogeneous network-based computing refers to general purpose concurrent
computing where:

. The hardware platform consists of a collection of computer systems of varying
architectures interconnected by one or more network types such as FDDI.

. Applications are viewed as comprising several sub-algorithms, each of which is
potentially different in terms of its most appropriate programming model, implementa-
tion language and resource requirements.

PVM’s portability is similar to Express. The PVM computing model is illustrated in
Fig. 3. Under PVM, a user defined collection of serial, parallel and vector computers
appear as one large distributed-memory computer. PVM supplies the functions to
automatically start up tasks on the virtual machine, and allows tasks to communicate and
synchronize with each other. A task is defined as a unit of computation in PVM
analogous to a UNIX process. Applications, which can be written in Fortran or C, can be
parallelized by using message-passing constructs common to most distributed-memory
computers. By sending and receiving messages, multiple tasks of an application can
cooperate to solve a problem in parallel.

PVM supports heterogeneity at the application, machine, and network level, and can
handle data conversion that may be required [16]. In other words, PVM allows
application tasks to exploit the architecture best suited to their solutions. Moreover,
PVM allows the virtual machine to be interconnected by a variety of different networks.
PVM provides routines of packing and sending messages between tasks. The model
assumes that any task can send a message to any other PVM task. The PVM
communication model provides synchronous and asynchronous blocking send and
receive, multicast to a set of tasks and broadcast to a user defined group of tasks. Since
message buffers are allocated dynamically, the maximum size of the messages that can
be sent or received is limited by the amount of available memory on a given host.

PVM supplies routines that enable a user process to become a PVM task and to
become a normal process again. These routines perform functions such as adding and
deleting hosts from the virtual machine, and starting and terminating PVM tasks. PVM
also provides fault-tolerance: if a host fails, PVM can detect this and delete the host

788 I. Ahmad / Parallel Computing 23 (1997) 783-812

Fig. 3. The PVM computing model.

from the virtual machine. The status of host can be requested by the application and, if
required, a replacement host can be added by the application.

4. Test environment

Our test environment included three platforms: an Intel iPSC/860 hypercube, an
Ethernet based network of SUN workstations, and an FDDI based ring of HP worksta-
tions. All tests programs were written in Fortran. The hardware platforms are briefly
described below.

Table 1

Configurations of the iPSC/860 used in the experiments

No. of nodes 32

Node CPU i860

Clock frequency 40 MHz

Main memory/node 8 Mbytes

Express version 3.1

PVM version 3.2.0

iPSC node O/S NX/2 (rel. 3.2)

I. Ahmad/Parallel Computing 23 (1997) 783-812 789

Table 2
Configurations of SUN IPX and HP clusters

Network SUN-IPX/Ethemet HP/PDDl-Ring

No. of workstations
System model
Main memory
OS name
Express version
PVM version

8 4
4/50 SPARC IPX 135
16 Mbytes 128 Mbytes
SUN OS 4.1.3 HP-ux 09.01
3.2.5 3.2.5
3.2 3.2

Our first platform was the Intel iPSC/860 parallel computer at Caltech’s Concurrent
Supercomputing Center. This system is based on hypercube interconnection network
topology and can scale up to 128 nodes. It is controlled from a host computer, called
‘system resource manager’ or SRM which runs System V UNIX [17]. The iPSC/860 is
based on the i860 RISC microprocessor [19]. Each node has a hardware communication
module, called DCM (direct connect module) that connects a node to the interconnection
network [22]. Each DCM router can support up to eight channels which are bit-serial and
full duplex. Table 1 gives a summary of the configuration of the iPSC/860. Some of
our results using the NX library concur with those of earlier studies [7,8]. In our
experiments, for small data sizes, we used 1000 repetitions for each primitive to improve
the accuracy; for large messages, the number of repetitions was varied from 100 to 200.

For performance evaluation of networks of workstations, we used two platforms: The
first was a cluster of 8 homogeneous SUN SPARC IPX workstations connected by 7
Ethernet segments. The second was a cluster of 4 homogeneous HP 735 workstations
connected by FDDI. Three of the HP workstations are equipped with FDDI interface
only. The fourth one has both FDDI and Ethernet interfaces and functions as a
host-based router for the rest three to the outside network. Table 2 gives a summary of
the configuration of SUN/IPX and HP clusters.

The experiments on these clusters were conducted at night and when the systems
were idle. In each experiment, for small data sizes, we used about 500 repetitions for
each primitive. For larger messages, the number of repetitions used was 100. In addition,
each experiment was done 5 times and the average was taken across repetitions within
an experiment and across experiments.

5. Communication performance

The communication tests include one-to-one communication, exchange, broadcast,
global reduction operations, ring communication and complete exchange. During our
experiments, we found that both Express and PVM exhibited dramatic differences in
performance when compared on the three hardware platforms. In addition, we also
discovered that the size of the communication data had a great impact on relative
performance of all three software environments. Therefore, for each primitive, we have
divided the results into two parts. The first part presents the timing results on the

790 I. Ahmad/Parallel Computing 23 (1997) 783-812

iPSC/860 and the second part presents the results on the HP and IPX clusters.
Furthermore, each part is presented with results on small (0 to 200 bytes), large (200 to
1000 bytes), and very large (1000 to 16000 bytes) messages. These results are provided
in the following sections.

5.1. One-to-one communication

For measuring the communication speed between two nodes, we performed the
standard echo test. In the echo test, the communication time between sending and
receiving nodes is measured by starting a clock at the sending node and then invoking
the send and receive routines to send out a message and wait for a reply. On the
destination node, receive and send routines are used to echo this message back to the
sending node. This process is repeated N times, and the average is taken.

The results of one-to-one communication using NX, Express and PVM on the
iPSC/860 are shown in Fig. 4. The results for the IPX and HP cluster are given in Fig.
5. Fig. 4 indicates that the timings of Express and NX are relatively close for small,
medium and large data sizes. PVM, on the other hand, is about 6 times slower than
Express and NX for small messages. But as the message size increases, the difference
between the performance of PVM and Express decreases. For example, as shown in Fig.
4(b), the difference between PVM and Express decreases steadily as the message size is
increased from 200 to 1000 bytes. For very large messages, as indicated in Fig. 4(c), the
timings of PVM and NX are about the same. Some timing values for various message
sizes are provided in Table 3.

From Fig. 5, we can observe that, on the HP cluster, PVM is 4 times slower than
Express. But this difference reduces to 1.5 times when the messages get larger. A similar
trend can be observed using IPX workstations with Ethernet.

Notice that Express timings on the cluster of HP workstations and iPSC/860 are
comparable, but PVM on the HP cluster is slower than that on the iPSC/860. Compared
to the HP cluster, Express and PVM are about 2 to 3 times slower on the IPX cluster.

5.2. The exchange operation

The exchange function simultaneously sends a message to a node and receives a
reply. The advantage of this function is that data can be read from and sent to the same
or different nodes in one step. Another advantage is that data transmission in reading
and writing can be overlapped. Moreover, the user is free from worrying about which
node should read first and which should write. For PVM, since it does not provide the
exchange operation, we implemented it by using one pvmfsend and one pvmfrecv in one
node, and correspondingly, one pvmfrecv and one pvmfsend in the other node.

As shown in Fig. 6, on the iPSC/860, PVM is about two times slower than Express.
However, as the message size increases, the difference between the timings of PVM and
Express becomes smaller. From Fig. 7, we can observe the overall trend in the
performance of PVM and Express on the HP and IPX clusters is similar to that of Fig. 6.
For small message sizes, Express running on the IPX cluster is 4 times faster than PVM.
On the HP cluster, Express is about 7 times faster than PVM. But with the larger

I. Ahmad/Parallel Computing 23 (1997) 783-812 791

(a) Small messages. (b) Large messages.

I

J

Fig. 4. Times for one-to-one communication using NX, Express, and PVM on the iPSC/860.

message sizes, Express is only about 2 times faster than PVM on both clusters. Express
on the HP cluster is about 2 times slower than Express on the iPSC/860. Similarly,
PVM on the HP cluster is 3 times slower than PVM on the iPSC/860.

5.3. The broadcast operation

Broadcast is performed to send the same data to more than one node. It can be
performed between host and nodes, or from one node to multiple nodes. It is one of the
frequently used primitive and is, therefore, important for performance comparison. Both
Express and PVM provide routines for broadcast. In NX, on the other hand, routines
such as csend and crecv are used for broadcast purpose as well. Message can also be
sent to a subcube composed of a set of nodes surrounding the source node. Express and
PVM have the extra advantage of specifying arbitrarily any node(s) that should receive
the broadcast message.

792 1. Ahmad/Parallel Computing 23 (1997) 783-812

(a) Small messages. (b) Large Inessages.

(c) very large messages.

Fig. 5. Times for one-to-one communication using Express and PVM on the HP and IPX clusters.

The timings for the broadcast operation on the iPSC/860 using 4 processors are
shown in Fig. 8. As can be noticed, the broadcast operation of PVM is inefficient and is
much slower compared to both NX and Express. For small messages, broadcast

Table 3
Times required for one-to-one communication with messages of different sizes (JLS)

Bytes iPSC/860 FDDI Ethernet

NX Express PVM Express PVM Express

0 68 83 736 189.0 677 643
4 74 92 741 189.7 858 647

100 115 134 841 271.0 1252 754
200 255 270 852 303.0 1342 820

loo0 566 584 929 598.0 1350 1270
16000 5941 5958 5815 4570.0 9271 19352

PVM

2225
2380
2563
2774
3211

23990

I. Ahmad/ Parallel Computing 23 (1997) 783-812 793

‘r

Fig. 6. Times for the exchange operation between nearest neighbors using NX, Express and PVM on the

iPSC/860 (4 processors).

operation of PVM for 4 nodes is bout 40 times slower than that of Express and NX.
However, for large messages, this difference reduces to 6-7 times.

As shown in Fig. 9, the broadcast operation of PVM on the cluster of IPX
workstations is about 7 times slower than Express when the messages size is small. But
for large messages, PVM is about 1.5 times slower than Express. On the HP cluster, for
small message size with 4 nodes, PVM is about 4 times slower than Express. For very
large messages, the timings for PVM are comparable to Express. For very large
messages, PVM even outperforms Express.

Comparing different hardware platforms, PVM on the IPSC/860 is 10 times slower
than on the HP cluster when message size is small. But, this difference reduces to about
5 times for large messages. Express on the IPX performs about 10 times slower than on
the iPSC/860 while on the HP it performs 2-3 times slower than on the iPSC/860,
when the messages are small.

794 I. Ahmad / Parallel Computing 23 (1997) 783-812

(b) Large messages

(c) very large messages

Fig. 7. Times for the exchange operation using Express and PVM on the HP and IPX clusters (4 workstations).

5.4. Global communication

Global communication operations are frequently required in parallel programs. In
such global operations, all the nodes participate in the same operation. The reduction
operations are examples that require global communication. A reduction operation takes
as input a value in each processors and outputs a single value in every processors. There
are various reduction operations such as add, prod, max, min, and, or, XOT, etc. While
NX provides different calls for each of these operations, Express has a unified function
for performing reduction operations. But since routines for these operations are not
provided by PVM, they had to be implemented. Express has an extra facility of
specifying a list of nodes that should participate in the global operation. In this paper,
only the results of the sum operation are given.

1. Ahmad/ Parallel Computing 23 (1997) 783-812

Fig. 8. Times for the broadcast operation using NX, Express and PVM on the iPSC/860 (4 processors).

Tables 4 and 5 include times to perform the global sum on 1, 4, 16 and 26 words.
The results for the iPSC/860 are repeated for 4, 8 16 and 32 processors. It can be seen
that both Express and NX are much faster than PVM. We observed similar results (not
reported here) for some other global reduction operations such as multiply and logical
AND. The global operations of PVM do not seem to scale very well with an increase in
the number of processors. Moreover, compared to iPSC/860, these operations are much
slower on the clusters of HP and IPX workstations.

5.5. The ring communication test

In the ring communication test, each node takes a message and circulates it through
each of the other nodes in the network. This communication pattern is generated in a
straight forward manner. Each node finds its ‘forward’ and ‘backward’ neighbor with
whom it communicates. Each node then writes the message to its ‘forward’ neighbor

796 I. Ahmad/ Parallel Computing 23 (1997) 783-812

(b) Large messages

CC) very large messages.

Fig. 9. Times for the broadcast operation using Express and PVM on the HP and IPX clusters (4 workstations).

and reads from the ‘backward’ neighbor. This is repeated N - 1 times where N is the
total number of nodes.

In general, the efficiency of this communication pattern depends on the underlying
network topology. Determination of the ‘forward’ and ‘backward’ neighbors can be
done using Express’s grid utilities which can convert a physical topology to a virtual
topology. On the hypercube, ‘forward’ and ‘backward’ neighbors can be easily found
using gray codes for implementing the ring pattern using NX or primitives. But for the
workstations cluster environment, this determination can not be done meaningfully.
Hence, we can just arbitrarily determine the ‘forward’ and ‘backward’ nodes for each
node, such that the message goes once through each node.

As can be seen from Fig. 10, on the iPSC/860, PVM is 1 to 2 times slower than
Express and NX primitives for 4 and 8 nodes. As the message size gets larger, the

1. Ahmad/Parallel Computing 23 (1997) 783-812 797

Table 4

Times for global sum (ms) on the iPSC/860

Processors Words NX-iPSC860 EXP.-i860 PVM-iPSC860

4 1 0.27 0.40 29.95

2 0.27 0.41 29.76

4 0.28 0.42 29.73

26 0.56 1.10 33.00

8

16

1 0.42 0.60 47.33

2 0.43 0.61 47.81

4 0.43 0.64 47.99

26 1.05 1.82 56.80

1

2

4

26

32 1 0.77 1.03 89.78

2 0.77 1.05 89.50

4 0.79 1.09 86.56

26 2.3 1 3.14 116.01

0.60
0.61

1.72

0.80 57.01

0.81 55.71

0.84 56.04

2.48 64.82

timings for PVM, Express and NX become almost identical. On the HP and IPX
clusters, PVM is slower than Express (Fig. 11). Compared with the iPSC/860, the ring
test on he HP cluster is about 2 times slower for small messages. For large messages,
timings for HP cluster are comparable to those on the iPSC/860 and sometimes even
smaller. The ring test on the HP cluster is 3 times faster than on the IPX cluster for
small message size.

Table 5

Times for global sum (ms) on the workstation clusters

Processors words Exp-HP PVM-HP

4 1 4.399 7.674

2 3.774 7.680

4 4.114 7.806

26 5.346 8.039

ExplPX PVM-IP

3.216 22.103

3.247 22.140

3.272 22.118

4.235 23.218

8 1 - - 5.809 32.85 1

2 - - 6.057 33.639
4 - 7.138 33.505

26 - - 7.901 34.838

798 I. Ahmad/Parallel Computing 23 (1997) 783-812

Fig. 10. Times for the ring test on the iPSC/860 using NX, Express and PVM (4 processors).

5.6. The complete exchange

In the complete exchange communication pattern, which is also known as all-to-all
personalized communication 191, each of the N nodes sends a different block of data to
each of the remaining N - 1 nodes. This communication pattern is equivalent to a
complete directed graph. It is used in a number of algorithms including matrix transpose,
matrix-vector multiply, 2-dimensional FITS distributed table look-ups, etc. The time
required to carry out the complete exchange operation is an important measure of the
power of a distributed-memory parallel computer system since it is the densest commu-
nication requirement that can be implemented on a network.

The timings for complete exchange using 4 nodes using PVM, Express and NX on
the iPSC/860 are given in Fig. 12. PVM is about 3 times slower than Express for small
messages. For medium and large messages this difference reduces considerably. For

I. Ahmad/Parallel Computing 23 (1997) 783-812 799

(c) very Large messages

Fig. 11. Times for the ring test using Express and PVM on the HP and IPX clusters (4 workstations).

larger message sizes, timings for NX primitives and Express are about the same while
PVM is about 2 times slower than the NX primitives and Express.

On the cluster of HP workstations (Fig. 131, PVM is 4 times slower than Express.
However, for large messages, PVM is only 2 times slower. Comparing different
platforms, for small messages, Express and PVM on the iPSC/860 are 6 times faster
than on the HP cluster. For large messages, the timings difference reduces to about 2
times only. Comparing the cluster of HP and IPX workstations, for small message size,
the complete exchange operation on the HP cluster is about 2 times faster than on the
IPX cluster.

6. Evaluation with an application benchmark suite

To compare the performance of Express, PVM and NX with real applications, we
implemented an application benchmark suite. The suite includes three different versions

800 1. Ahmad/ Parallel Computing 23 (1997) 783-812

Fig. 12. Times for the complete exchange test using NX, Express and PVM on the iPSC/860 (4 processors).

of Gaussian elimination, and the N-body problem. These applications were coded using
Fortran with Express, PVM and NX primitives. The execution times were obtained with
1, 2, 4 and 8 nodes on the IPX workstations cluster, and 1, 2 and 4 nodes on the HP
cluster. On the iPSC/860, we used 1,2,4, 8, 16 and 32 nodes. The execution time of an
application was measured by taking the average across all the nodes. The results are
given in the following sections.

6.1. Gaussian elimination (row-block partitioning)

The three versions of Gaussian elimination for solving linear equations are based on
partial pivoting algorithms, but with different data partitioning strategies. As a result, the
algorithms used in the three versions are quite different. The first version is based on
row-block partitioning, that is, an equal number of contiguous rows of the coefficient
matrix are assigned to each processor. The program consists of three routines; for

I. Ahmad/Parallel Computing 23 (1997) 783412 801

(c) Large messages.

Fig. 13. Times for the complete exchange test using Express and PVM on the HP and IPX clusters (4
workstations).

generating the random data, performing Gaussian elimination, and backward substitu-
tion. Only the Gaussian elimination routine was timed.

The execution times of Gaussian elimination with row-block partitioning using
Express, PVM and NX primitives on different platforms are shown in Tables 6-8. These
tables also include the times for serial execution of Gaussian elimination using one
processor. On the iPSC/860, the serial version is implemented using NX only. On the
iPSC/860, the execution times for the Express version exhibit speedup with the number
of processors varied from 1 to 16. The speedup is better with a larger matrix size.
However, the execution times start to increase with 32 processors. On the other hand,
the NX version still yields additional speedup with 32 processors. Using the PVM
version, speedup is observed with the number of processors varying from 2 to 4.
However, the execution times start increasing with 8 or more processors. From Table 6,

802 I. Ahmad/ Parallel Computing 23 (1997) 783-812

Table 6
Timings (s) for row-block partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860

Matrix size PE = 1 PE = 2 PE=4 PE=8 PE= 16 PE=32

NX NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM

256 x 256 5.94 3.6 3.8 11.3 2.2 2.3 10.2 1.5 1.2 11.8 1.1 2.1 14.8 0.9 3.5 22.1

384X 384 24.71 12.8 13.0 19.7 6.6 6.8 17.3 4.0 4.7 28.3 2.6 4.4 14.8 2.2 6.9 22.4

512X 512 59.63 30.1 31.1 35.3 15.5 15.6 28.2 8.6 9.2 29.4 5.6 8.5 31.5 4.1 11.4 48.3

640x 640 120.87 61.1 62.6 62.4 31.0 31.1 41.5 16.2 17.5 36.3 9.8 14.0 41.2 6.9 17.4 58.9

768 x 768 219.87 106.5 108.2 106.5 54.2 54.7 64.8 27.9 28.7 48.0 16.7 20.8 54.3 10.8 24.7 74.0

Table 7

Timings (s) for row-block partitioned Gaussian elimination using Express and PVM on the IPX cluster connected by
Ethernet

Matrix size PE= I PE = 2 PE=4 PE= 8

Express PVM Express PVM Express PVM Express PVM

256 x 256 15.26 15.97 8.38 16.44 5.24 14.53 7.10 19.16

384 x 384 51.74 53.78 25.52 41.65 15.38 34.09 15.93 33.60

512 X 512 124.87 131.82 66.09 92.46 38.66 66.86 26.89 58.64

640 x 640 247.12 255.48 126.79 157.65 62.26 99.72 61.62 88.97

768 X 768 425.9 I 448.82 223.47 26 1.07 118.87 167.52 94.33 120.38

Table 8
Timings (s) for row-block partitioned Gaussian elimination using Express and PVM on the HP cluster connected by
FDDI

Matrix size

256 X 256

384 x 384

512X 512

640X640

168 x 768

PE= 1

Express

6.01

22.36

67.43

115.74

232.90

PVM

5.95

2 I .94

65.86

113.46

226.91

PE = 2

Express

3.07

10.43

29.02

52.30

99.04

PVM

6.63

18.36

41.32

70.75

118.81

PE = 4

Express

1.81

5.72

12.18

25.22

44.65

PVM

5.52

14.16

25.56

43.01

66.70

one can observe that for small number of processors on the iPSC/860, the difference
between the performance of Express and NX is insignificant. Express performs poorly
with a large number of processors. The performance of PVM is even worse for the large
number of processors. The main reason is that the algorithm used makes an extensive
use of broadcast operations for sending the pivot row to other processors. Moreover, no
optimizations are made in communication calls to exploit the hypercube topology. As a
result, the algorithm uses a number of global operations which are quite slow in Express
and PVM. The relative performance of this version of Gaussian elimination using
Express and NX is also indicated in Fig. 14(a) in which we have plotted the ratios of

1. Ahmad/Parallel Computing 23 (1997) 783-812 803

(a) Row-block partitionmg. ib) Column-block partitioning

(c) Column-scattered partitioning.

Fig. 14. Ratios of execution times of Express to NX for different Gaussian elimination algorithms on the

iPSC/860.

execution times of Express to NX. The ratios of execution times of PVM to Express are
plotted Fig. IS(a).

On both the IPX and HP clusters, the execution times for Express and PVM exhibit
speedup with an increasing number of processors, with a reasonably large matrix size.
The timings of Express version is again better than the PVM version.

6.2. Gaussian elimination (column-block partitioning)

In this version of Gaussian elimination, the data is partitioned across processors in
terms of blocks of columns. The execution times for this version are shown in Tables
9-l 1. On the iPSC/860, Express and PVM perform well for large matrices when the
number of processors is between 2 and 16 but performed poorly for 32 processors. It can

804 I. Ahmad/ Parallel Computing 23 (1997) 783-812

081
5 16 N”k‘ 20 25 30

0, “odes

(b) Column-block partitioning.

(c) Column-scattered partitioning.

Fig. 15. Ratios of execution times of PVM to Express for different Gaussian elimination algorithms on the

iPSC/860.

be noticed that, in general, the execution times of the column-block partitioned versions
are larger than those of the row-block partitioned versions. This is due to the fact that in
the row-block partitioned algorithm, the determination of the pivoting row is done in

Table 9
Timings (s) for column-block partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860

Matrix size PE = 2 PE = 4 PE=8 PE= 16 PE = 32

NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM

256 X 256 6.3 7.0 6.7 3.2 3.6 3.4 1.8 2.8 2.8 1.2 3.8 4.4 1.1 5.3 7.8

384X 384 23.1 23.9 23.1 9.8 11.6 9.9 5.0 6.8 6.1 3.2 7.6 7.8 2.6 12.3 13.6

512X 512 46.0 47.5 46.0 23.0 26.5 24.6 11.9 14.3 13.4 6.6 13.2 12.9 5.1 20.2 21.3

640 X 640 102.6 110.2 102.7 51.5 56.5 51.7 25.8 28.6 26.9 12.1 20.8 20. I 8.3 30.3 30.6

768X 768 178.6 182.8 182.9 90.6 98.7 90.8 46.9 50.2 47.3 24.2 31.0 28.6 13.0 42.7 41.7

I. Ahmad/Parallel Computing 23 (1997) 783-812 805

Table 10
Timings (s) for column-block partitioned Gaussian elimination using Express and PVM on the IPX cluster connected

by Ethernet

Matrix size

256 x 256

384 X 384

512X 512

640 X 640

768 X 768

PE= I

Express

9.90

32.12

16.59

150.03

265.83

PVM

25.01

55.93

104.70

198.01

303.50

PE = 2

Express

9.81

26.55

51.55

107.79

182.40

PVM

27.06

53.3 I
104.61

154.16

241.01

PE=4

Express

7.7 I
18.80

37.1 I
65.54

105.54

PVM

38.5 I
63.91

91.97

131.15

185.98

PE= 8

Express

10.5 I
18.83

33.92

51.55

76.23

PVM

55.46

96.41

199.60

256.55

317.70

parallel. On the other hand, column-block partitioned algorithm performs this step
serially. When the number of processors is large, the PVM-based column-block
partitioned version takes less time than the PVM-based row-partitioned version because
the broadcast operation is used less frequently in the former version. The inefficient
broadcast operation of PVM, therefore, is the main cause of performance degradation
when using a large number of processors.

On the IPX cluster of workstations, it is interesting to see that Express yield speedup
if the number of workstations is increased even up to 8. PVM, however, does not
perform well beyond 4 workstations. Both Express and PVM perform better on the HP
cluster than on the iPSC/860 with 1, 2 or 4 workstations or processors. The relative
performance of Express to NX and PVM to Express is indicated in Fig. 14(b) and Fig.
15(b), respectively.

6.3. Gaussian elimination (column-scattered partitioning)

In this version, the data is partitioned using cyclic distribution of the columns of the
coefficient matrix. The execution times of Gaussian elimination with column-scatter
partitioning using Express, PVM and NX primitives on different platforms are shown in
Tables 12-14. The results indicate that, in general, this algorithm is better than the
column-block partitioning version but is comparable to the row-block partitioning
version. This is because the column-scatter partitioning can balance load well which

Table II

Timings (s) for column-block partitioned Gaussian elimination using Express and PVM on the HP cluster connected

by FDDI

Matrix size

256 X 256

384 X 384

512 x 512
640 X 640

768 x 768

PE= 1

Express

3.10

11.40

30.84
66.35

115.99

PVM

7.71

18.44

40.80
74.52

125.29

PE = 2

Express

2.85

9.05

27.31
41.42

89.8 1

PVM

1.92

17.58

33.11
57.31

93.04

PE-4

Express

2.15

6.28

13.01

25.80

43.33

PVM

10.43

19.74

33.48

50.45

81.55

806 I. Ahmad/Parallel Computing 23 (1997) 783-812

Table 12

Timings (s) for column-scattered partitioned Gaussian elimination using NX, Express and PVM on the iPSC/860

Matrix size PE = 2 PE = 4 PE = 8 PE= 16 PE=32

NX Express PVM NX Express PVM NX Express PVM NX Express PVM NX Express PVM

256 x 256 4. I 4.4 4.1 2.2 2.6 2.4 1.4 2.7 2.5 1.2 3.8 3.9 1.2 6.3 6.6

384x 384 13.9 14.5 14.0 6.1 1.7 1.2 3.8 5.4 5.1 3.0 7.5 1.9 2.8 12.3 12.5

512 X 512 32.0 33.9 32.2 16.2 17.7 16.3 8.9 11.2 10.3 5.8 12.9 11.8 5.0 20.1 20.2

640 X 640 63.3 65.6 63.4 32.1 34.1 33.2 16.1 18.8 17.6 9.8 20.0 19.8 8.1 30.1 30.4

768 X 768 110.7 112.7 111.0 55.6 58.3 57.0 28.6 34.8 32.4 15.4 28.4 28.1 12.5 42.1 43.0

Table 13

Timings (s) for column-scattered Gaussian elimination using Express and PVM on the IPX cluster connected by

Ethernet

Matrix size PE= 1 PE = 2 PE=4 PE=8

Express PVM Express PVM Express PVM Express PVM

256 X 256 7.38 12.26 6.18 25.96 6.62 35.81 9.14 55.52

384 X 384 23.95 32.96 16.83 46.28 17.36 59.60 17.19 89.81

512X 512 58.61 61.32 34.54 74.39 28.84 92.48 35.59 131.26

640 X 640 112.26 122.60 63.04 114.93 55.14 203.08 51.02 191.80

768 X 768 192.60 203.94 102.78 169.32 68.68 147.02 72.40 255.08

Table 14

Tunings (s) for column-scattered Gaussian elimination using Express and PVM on the HP cluster connected by FDDI

Matrix size

256 X 256

384 X 384

512X 512

640X 640

168 x 168

PE= 1

Express

0.27

9.9 I
27.49

60.55

104.41

PVM

5.16

14.98

34.44

63.87

108.49

PE = 2

Express

1.82
5.39

12.32

26.61

56.74

PVM

1.3 1

14.78

26.48

44.09

69.12

PE = 4

Express

1.88

4.45

9.10

17.20

29.14

PVM

10.59

18.51

29.61

43.46

63.68

results in reduction of processor waiting times. However, it requires excessive ex-
changes of messages which can delay the execution. When the matrix is small and the
number of processors is large, the benefit of load balancing is small compared to the
extra cost of communication.

On the iPSC/860, for small matrix size, the execution times for the Express version
exhibit speedup with the number of processors increased from 1 to 8. Speedup is also
observed for 16 processors but only for large matrix sizes. The execution times increase
with 32 processors. On the other hand, the NX version yields speedup with 32
processors. The execution times for the PVM version are comparable to Express. For
large matrix size, the PVM version sometimes performs better than the Express version.

T
ab

le

I5

T
im

in
gs

(s

)
fo

r
th

e
N

-b
od

y
pr

ob
le

m

us
in

g
N

X
,

E
xp

re
ss

an

d
P

V
M

on

th

e
iP

SC
/8

60

Po
in

ts

P
E

=

1

P
E

 =

2
P

E
=

4
P

E

=

8
P

E
=

16

P

E
=

32

N
X

E

X
D

K
SS

P

V
M

N

X

E
xo

re
ss

P

V
M

N

X

E
xo

re
ss

P

V
M

N

X

E
xp

re
ss

P

V
M

N

X

E
xo

re
ss

P

V
M

51
2

2.
78

1.

49

1.
52

I .8

2
0.

85

0.
87

0.

93

0.
41

0.

48

4.
02

0.

26

0.
3

I
0.

41

0.
20

0.

32

0.
45

Ik

10

.9
6

5.
69

6.

20

6.
38

2.

97

2.
91

4.

40

1.
49

1.

69

2.
95

0.

81

0.
95

2.

38

0.
53

0.

67

0.
49

2k

42
.7

 I

22
.2

5
22

.9
9

22
.1

2
II

.2
0

11
.3

6
13

.8
5

5.
42

5.

90

8.
24

2.

89

3.
35

6.

94

1.
61

2.

23

3.
28

4k

16
6.

5
I

84
.1

6
86

.5
0

87
.3

2
42

.5
 I

44

.0
0

53
.5

7
21

.5
8

22
.2

7
30

.4
4

II
.4

3
12

.2
9

18
.6

5
6.

32

8.
19

15

.6
2

8k

65
7.

88

33
1.

46

34
2.

19

34
2.

21

16
7.

28

17
1.

23

19
5.

98

84
.1

1
86

.9
9

11
4.

96

42
.3

4
44

.4
7

62
.5

7
22

.4
2

24
.0

I

36
.5

4
l6

k
-

13
42

.9

14
01

.2

-
67

4.
42

69

4.
64

75

3.
15

33

9.
83

35

0.
30

41

3.
08

17

0.
04

11

1.
67

23

0.
82

85

.3
4

89
.8

8
12

4.
7

3

H

T
ab

le

16

T
im

in
gs

(s

)
fo

r
th

e
N

-b
od

y
pr

ob
le

m

us
in

g
E

xp
re

ss

an
d

PV
M

on

th

e
IP

X

cl
us

te
r

co
nn

ec
te

d
by

E

th
er

ne
t

Po
in

ts

PE
=

l
PE

=2

P
E

 =
 4

E
xp

re
ss

PV

M

E
xp

re
ss

PV

M

E
xp

re
ss

PV

M

P
E

 =
 8

E
xp

re
ss

PV

M

51
2

3.
51

Ik

14
.2

0

2k

58
.2

7

4l
i

22
9.

00

ak

90
8.

17

16
k

-

3.
94

1.

87

2.
06

I .

09

1.
06

0.

57

0.
62

15
.3

2
7.

27

7.
57

3.

76

5.
19

1.

86

2.
98

59
.6

6
28

.7
5

29
.6

0
14

.9
5

19
.7

8
7.

53

9.
30

24
1.

02

11
3.

87

11
4.

37

58
.4

0
72

.4
1

29
.2

7
38

.7
8

94
4.

2
I

45
8.

32

46
8.

84

23
2.

92

23
 I

 .6
7

11
9.

96

11
6.

03

-
18

02
.0

5
18

49
.4

91

8.
6

90
9.

97

48
1.

33

45
6.

41

I. Ahmad/Parallel Computing 23 (1597) 783-812 809

Table 17
Timings (s) for the N-body problem using Express and PVM on the IPX cluster connected by FDDI

Points PE=l PE=2 PE=4

Express PVM Express PVM Express PVM

512 1.71 2.36 0.86 1.21 0.43 0.66

Ik 6.79 9.45 3.35 4.75 1.65 2.43

2k 27.09 37.96 13.21 18.97 6.60 9.5 1

4k 108.50 151.55 52.77 75.49 26.35 37.91

8k 433.82 606.14 209.75 299.86 105.58 150.71

16k - - 838.73 1233.23 467.35 601.46

On the cluster of HP and IPX clusters, the execution times for the Express and PVM
decrease with increasing number of workstations. The times on the iPSC/860 and the
HP cluster were comparable. For smaller matrix size, the times on the HP cluster are
even better than those on the iPSC/860. The relative performance of Express to NX and
PVM to Express is indicated in Fig. 14(c) and Fig. 15(c), respectively.

6.4. The N-body problem

The program for the N-body problem was written ’ using the algorithm reported in
[20]. The algorithm used in this program is the simple o(N2) algorithm and not the
more optimized O(N log N) approach. The execution times of the three platforms are
shown in Tables 15-17. On the iPSC/860, all three versions yield speedup as the
number of processors increases. For large number of bodies, the times of Express and
iPSC/860 are very close. However, the PVM version is slower than the other two
versions by a factor of 1 to 2 (see Fig. 16). On the HP cluster, the PVM version is in
general 1.5 times slower than the Express version. On the IPX cluster, the times of both

08 5 10 NA 0, no66 20 25 30 5 10 Nukr 01 “Ok 20 25 30

(a) Ratios of execution times of Express to NX. (b) Ratios of execution times of PVM to Express.

Fig. 16. Ratios of execution times of Express to NX and PVM to Express for the N-Body problem on tic

iPSC/860.

’ Min-Yoa Wu thankfully provided the NX version.

810 I. Ahmad/Parallel Computing 23 (1997) 783-812

Express and PVM versions are close. Compared to the iPSC/860, the HP cluster was
faster but IPX is slower. Because of less communication involved, both Express and
PVM scale well on the workstation clusters.

7. Conclusions

In this paper, we made an experimental performance comparison of Express and
PVM. The performance study was carried out on an iPSC/860 parallel computer, a
cluster of IPX workstations connected by an Ethernet and a cluster of HP workstations
connected by FDDI. The summary of our results is that Express primitives are in general
faster than those of PVM but marginally slower than those of NX. When the message
size is small, PVM primitives are significantly slower than NX and Express on the
iPSC/860. In particular, the broadcast primitive of PVM needs significant improve-
ment. In general, PVM is also slower than Express on the IPX and HP clusters. As the
message size increases, the difference between the performance of PVM and Express
becomes less significant. For very large messages, PVM performs slightly better than
Express. This makes Express more suitable for fine-grained applications on parallel
systems and PVM more suitable for coarse-grained problems on distributed systems.
The global operations of both Express and PVM do not scale very well with increasing
number of processors. Comparing different platforms, FDDI is comparable to iPSC/860.
However, since only 4 workstations were available to us, the scalability of FDDI could
not be determined. In general, FDDI is faster than Ethernet by factors of 4 to 8.
Comparing the timings of applications, we noticed that PVM outperformed Express on
the IPSC/860 when the granularity of the problem was large, the number of processors
was small and the message sizes were large.

The advantages of PVM include its small size, the simplicity in programming and
support for complete heterogeneous supercomputing. The initial versions of PVM used
TCP/IP sockets to implement all communications. Consequently, PVM was limited to
distributed systems. However, recent versions of PVM such as the one reported in this
paper have included implementation within the parallel systems. On the other hand,
Express which was originally developed for homogeneous multiprocessors has evolved
towards distributed systems. It has also tackled the problem of heterogeneity recently.
Contrary to PVM, Express provides a very large number of primitives and a number of
additional tools and utilities.

The choice of using Express or PVM would depend on a number of factors such as
the type of application, programming paradigm, communication patterns and typical
sizes of the messages in the application. The type of application may determine whether
the application can be better implemented as coarse-grained or fine-grained. If it is
coarse-grained, a networked hardware platform would be more useful and PVM would
be a more appropriate choice. However, if the application can be implemented as
fine-grained on a parallel computing machine, Express can be more useful. The
advantage of Express is that by using its portable message-passing library, the develop-
ment phase of an application can be carried out on a cluster of networked workstations
but final experimentation can be done on the parallel machine. The programming

I. Ahmad/Paraliel Computing 23 (1997) 783-812 811

paradigm could be SPMD or pure MIMD with a combination of different processes. The
former can be better implemented using Express’s grid facilities while the latter can be
done more efficiently using PVM due to its ability to dynamically create processes.
Furthermore, PVM can be useful for running an application across multiple parallel
machines as a combination of parallel and distributed computing paradigms. Communi-
cations patterns and sizes of the messages within a parallel program can also affect the
choice of Express and PVM (for example, PVM does not provide collective communica-
tion and global operations). Finally, the major advantage of PVM over Express is that
the former is available in public domain while the latter is a commercial product.

References

[11 I. Ahmad et al., Implementation and Scalability of Fortran 90D Intrinsic Functions on Distributed

Memory Machines, Technical Report, Northeast Parallel Architectures Center, Syracuse University,

Syracuse, NY, May 1992.

[2] S. Ahuja, N. Carriero, D. Celemter, Linda and Friends, IEEE Comput. 8 (1986)

[3] I. Angus, G. Fox, J. Kim, D. Walker, Solving Problems on Concurrent Processors, vol. II, Prentice Hall,

Englewood Cliffs, New Jersey, 1990.

[4] G. Bell, Ultracomputers a teratlop before its time, Commun. ACM 35 (8) (1992) 27-47.

[5] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. Sunderam, Paradigms and Tools for Heterogeneous

Network Computing, Supercomputing ‘92, Nov. 1992.

[6] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. Sunderam, Solving computational grand challenges

using a network of heterogeneous supercomputers, Proceedings of Fifth SIAM Conference on Parallel

Processing, Philadelphia, PA, 1992.

[7] R. Berrendorf, J. Helm, Evaluating the basic performance of the Intel iPSC/860 parallel computer,

Concurrency Pratt. Exper. 4 (3) (1992) 223-240.

181 S. Bokhari, Communication overhead on the Intel iPSC/860 hypercube, ICASE Interim Report 10

182055, NASA Langley Research Center, Hampton, VA, May 1990.

191 S. Bokhari, Multiphase complete exchange on a circuit switched hypercube, Technical Report 91-5,

ICASE, NASA Langly Research Center, Hampton, Virginia, January 1991.

[lOI R.M. Butler and E. Lusk, Monitors, messages and clusters: ‘Ihe P4 parallel programming system,

Technical Report TM-ANL 92/ 17, Argonne National Laboratory, 1992,

1111 N. Carriero, D. Celemter, Linda in context, Commun. ACM. 32 (4) (1989) 444-458.

[12] J. Flower and A. Kolawa, A Packet History of Message Passing Systems, Parasoft Corporation, 1992.

[I31 J. Flower, A. Kolawa, Express is not just a message passing system: Current and future directions in

Express, Parallel Comput. 20 (1994) 597-614.

[141 G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.A. Salmon, D.A. Walker, Solving Problems on

Concurrent Processors, vol. 1, Prentice Hall, 1988.

[I51 G.A. Geist, M.T. Heath, B.W. Peyton, P.H. Worley, A user’s guide to Picl, a portable instrumented

communication library, Technical Report ORNL/TM-11616, Oak Ridge National Laboratory, Oak
Ridge, TN, October 1991.

[I61 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM 3 Users Guide and

Reference Manual, Oakridge National Labs., 1992.

[I71 Intel Corporation, iPSC/2 and iPSC/860 Programmers Reference Manual, June 1990.

[I81 O.A. McBryan, An overview of message-passing environments, Parallel Comput. 20 (1994) 417-444.

[191 S.A. Moyer, Performance of the iPSC/860 node architecture, Tech. Report IPC-TR-91007, Institute of

Parallel Computations, University of Virginia, May 1991.

[201 Parasoft Corporation, Express, Fortran User’s Guide, 1990.

[211 Parasoft Corporation, Express Introductory Guide version 3.2, 1992.

[221 P. Pierce, The NX message passing interface, Parallel Comput. 20 (1994) 463-480.

812 I. Ahmad/ Parallel Computing 23 (1997) 783-812

[23] A. Skjellum and A.P. Leung, Zipcode: A portable multicomputer communication library atop the reactive
kemal, Proceedings of the 5th Distributed Memory Computing Conference, April 1990.

[24] V. Sunderam, PVM: A framework for parallel distributed computing, Concurrency Pratt. Exper. 3 (4)
(1990) 315-339.

[25] VS. Sunderam, G.A. Geist, J. Dongarra, R. Manchek, The PVM concurrent computing system:
Evolution, experiences and trends, Parallel Comput. 20 (1994) 531-545.

[26] L. Turcotte, A survey of software environments for exploiting networked computing resources, Technical
Report, Engineering Research Center for Computational Field Simulations, Mississippi State University,
January 1993.

